40 research outputs found

    Directional correlations in quantum walks with two particles

    Get PDF
    Quantum walks on a line with a single particle possess a classical analogue. Involving more walkers opens up the possibility of studying collective quantum effects, such as many-particle correlations. In this context, entangled initial states and the indistinguishability of the particles play a role. We consider the directional correlations between two particles performing a quantum walk on a line. For non-interacting particles, we find analytic asymptotic expressions and give the limits of directional correlations. We show that by introducing delta-interaction between the particles, one can exceed the limits for non-interacting particles

    Continuous deformations of the Grover walk preserving localization

    Full text link
    The three-state Grover walk on a line exhibits the localization effect characterized by a non-vanishing probability of the particle to stay at the origin. We present two continuous deformations of the Grover walk which preserve its localization nature. The resulting quantum walks differ in the rate at which they spread through the lattice. The velocities of the left and right-traveling probability peaks are given by the maximum of the group velocity. We find the explicit form of peak velocities in dependence on the coin parameter. Our results show that localization of the quantum walk is not a singular property of an isolated coin operator but can be found for entire families of coins

    Multi-Particle Universal Processes

    Get PDF
    We generalize bipartite universal processes to the subclass of multi-particle universal processes from one to N particles. We show how the general statement for a multi-particle universal process can be constructed. The one-parameter family of processes generating totally anti-symmetric states has been generalized to a multi-particle regime and its entanglement properties have been studied. A view is given on the complete positivity and the possible physical realization of universal processes.

    Full-revivals in 2-D Quantum Walks

    Full text link
    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full-revival of its quantum state. Localization for two dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show on the example of the 2-D Grover walk that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full-revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference which has no counterpart in classical random walks

    Complete classification of trapping coins for quantum walks on the two-dimensional square lattice

    Get PDF
    One of the unique features of discrete-time quantum walks is called trapping, meaning the inability of the quantum walker to completely escape from its initial position, although the system is translationally invariant. The effect is dependent on the dimension and the explicit form of the local coin. A four-state discrete-time quantum walk on a square lattice is defined by its unitary coin operator, acting on the four-dimensional coin Hilbert space. The well-known example of the Grover coin leads to a partial trapping, i.e., there exists some escaping initial state for which the probability of staying at the initial position vanishes. On the other hand, some other coins are known to exhibit strong trapping, where such an escaping state does not exist. We present a systematic study of coins leading to trapping, explicitly construct all such coins for discrete-time quantum walks on the two-dimensional square lattice, and classify them according to the structure of the operator and the manifestation of the trapping effect. We distinguish three types of trapping coins exhibiting distinct dynamical properties, as exemplified by the existence or nonexistence of the escaping state and the area covered by the spreading wave packet

    Discrete-time quantum walks on one-dimensional lattices

    Full text link
    In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattice, we derive an explicit expression for the return probability, which shows scaling behavior P(0,t)t1P(0,t)\sim t^{-1} and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The average mixing time MϵM_{\epsilon} closes to the limiting probability in linear NN (size of the lattice) for large values of thresholds ϵ\epsilon. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.Comment: 17 pages research not

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex

    Recurrence for discrete time unitary evolutions

    Full text link
    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte
    corecore